Caffe中Layer的学习

2017/6/15 posted in  Caffe 数据结构

Layer是Caffe的基本计算单元,至少有一个输入Blob (Bottom Blob)和一个输出Blob (Top Blob),部分Layer带有权值(Weight)和偏置项(Bias),有两个运算方向:前向传播(Forward)和反向传播(Backward),其中前向传播计算会对输入Blob进行某种处理(存权值和偏置项的Layer会利用这些对输入进行处理),得到输出Blob;而反向传播计算则对输出Blob的diff进行某种处理,得到输入Blob的diff(有权值和偏置项的Layer可能也会计算权值Blob、偏置项Blob的diff)。

layer中的数据结构描述

我们可以搜索caffe中关于message LayerParameter的类,来了解.
如果你一开始找不到这个类在那个文件描述,可以用下面这个命令去搜索:

➜  caffe git:(master) ✗ grep -n -H -R "message LayerParameter" *


得到它的路径.

我们发现是在src/caffe/proto/caffe.proto这个路径中.因为caffe使用google_protobuf数据类型来声明layer.关于google_protobuf的相关内容,之后可以研究一下.

这里我们看一下源码:

//注意:如果你增加了1个新的LayerParameter域,一定记得更新一个可用ID
// LayerParameter 下一个layer-specific ID: 147 (last added: recurrent_param)
message LayerParameter {
  optional string name = 1; // the layer name
  optional string type = 2; // the layer type
  repeated string bottom = 3; // 输入Blob(bottom Blob)的名称
  repeated string top = 4; // 输出Blob(Top Blob)的名称

  // 当前计算阶段(TRAIN 或 TEST)
    optional Phase phase = 10;

  // 为每个Top Blob分配对损失函数的权重,毎个Layer都有默认值,要么为0,表示不参与目标函数计算:要么为1,表示参与损失函数计算
  repeated float loss_weight = 5;

  // 指定训练参数(例如相对全局学习常数的缩放因子,以及用于权值共享 的名称或其他设置)
  repeated ParamSpec param = 6;

  // 承载了该层数值参数的Blob
  repeated BlobProto blobs = 7;
  //是否对Bottom Blob进行反向传播过程。该字段的维度应与 Bottom Blob个数一致
  // Specifies whether to backpropagate to each bottom. If unspecified,
  // Caffe will automatically infer whether each input needs backpropagation
  // to compute parameter gradients. If set to true for some inputs,
  // backpropagation to those inputs is forced; if set false for some inputs,
  // backpropagation to those inputs is skipped.
  //
  // The size must be either 0 or equal to the number of bottoms.
  repeated bool propagate_down = 11;

 //控制某个层在某个时刻是否包含在网络中,基于当前NetState。你可以为include或exclude(不要同时)指定非零值。如果没有任何规则,那么该层一直包含在网络中:如果当前NetState满足了任何1个指定规则,耶么该层会被包含或排斥
  // Rules controlling whether and when a layer is included in the network,
  // based on the current NetState.  You may specify a non-zero number of rules
  // to include OR exclude, but not both.  If no include or exclude rules are
  // specified, the layer is always included.  If the current NetState meets
  // ANY (i.e., one or more) of the specified rules, the layer is
  // included/excluded.
  repeated NetStateRule include = 8;
  repeated NetStateRule exclude = 9;

  // Parameters for data pre-processing.数据预处理参数
  optional TransformationParameter transform_param = 100;

  // Parameters shared by loss layers.所有损失层共享的参数
  optional LossParameter loss_param = 101;
  
  
  //特定类型层的参数。注意一些层实现时可能有多于一种的计算引擎,这些层包括一个引擎类型和引擎参数来选择实现.默认引擎是在编译阶段由引擎开关设置的
  // Layer type-specific parameters.
  //
  // Note: certain layers may have more than one computational engine
  // for their implementation. These layers include an Engine type and
  // engine parameter for selecting the implementation.
  // The default for the engine is set by the ENGINE switch at compile-time.
  optional AccuracyParameter accuracy_param = 102;
  optional ArgMaxParameter argmax_param = 103;
  optional BatchNormParameter batch_norm_param = 139;
  optional BiasParameter bias_param = 141;
  optional ConcatParameter concat_param = 104;
  optional ContrastiveLossParameter contrastive_loss_param = 105;
  optional ConvolutionParameter convolution_param = 106;
  optional CropParameter crop_param = 144;
  optional DataParameter data_param = 107;
  optional DropoutParameter dropout_param = 108;
  optional DummyDataParameter dummy_data_param = 109;
  optional EltwiseParameter eltwise_param = 110;
  optional ELUParameter elu_param = 140;
  optional EmbedParameter embed_param = 137;
  optional ExpParameter exp_param = 111;
  optional FlattenParameter flatten_param = 135;
  optional HDF5DataParameter hdf5_data_param = 112;
  optional HDF5OutputParameter hdf5_output_param = 113;
  optional HingeLossParameter hinge_loss_param = 114;
  optional ImageDataParameter image_data_param = 115;
  optional InfogainLossParameter infogain_loss_param = 116;
  optional InnerProductParameter inner_product_param = 117;
  optional InputParameter input_param = 143;
  optional LogParameter log_param = 134;
  optional LRNParameter lrn_param = 118;
  optional MemoryDataParameter memory_data_param = 119;
  optional MVNParameter mvn_param = 120;
  optional ParameterParameter parameter_param = 145;
  optional PoolingParameter pooling_param = 121;
  optional PowerParameter power_param = 122;
  optional PReLUParameter prelu_param = 131;
  optional PythonParameter python_param = 130;
  optional RecurrentParameter recurrent_param = 146;
  optional ReductionParameter reduction_param = 136;
  optional ReLUParameter relu_param = 123;
  optional ReshapeParameter reshape_param = 133;
  optional ScaleParameter scale_param = 142;
  optional SigmoidParameter sigmoid_param = 124;
  optional SoftmaxParameter softmax_param = 125;
  optional SPPParameter spp_param = 132;
  optional SliceParameter slice_param = 126;
  optional TanHParameter tanh_param = 127;
  optional ThresholdParameter threshold_param = 128;
  optional TileParameter tile_param = 138;
  optional WindowDataParameter window_data_param = 129;
}

Layer是怎么炼成的

Layer头文件位于include/caffe/layer.hpp中,我们来解析一下:

#ifndef CAFFE_LAYER_H_
#define CAFFE_LAYER_H_

#include <algorithm>
#include <string>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer_factory.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/math_functions.hpp"

/**
 Forward declare boost::thread instead of including boost/thread.hpp
 to avoid a boost/NVCC issues (#1009, #1010) on OSX.
 */
namespace boost { class mutex; }

namespace caffe {

/**
 * @brief An interface for the units of computation which can be composed into a
 *        Net.
 *
 * Layer%s must implement a Forward function, in which they take their input
 * (bottom) Blob%s (if any) and compute their output Blob%s (if any).
 * They may also implement a Backward function, in which they compute the error
 * gradients with respect to their input Blob%s, given the error gradients with
 * their output Blob%s.
 */
template <typename Dtype>
class Layer {
 public:
  /**
   * You should not implement your own constructor. Any set up code should go
   * to SetUp(), where the dimensions of the bottom blobs are provided to the
   * layer.
   */
   //显式构造函数,从LayerParameter对象中加载配置
  explicit Layer(const LayerParameter& param)
    : layer_param_(param) {
      // Set phase(训练/预测) and copy blobs (if there are any).
      phase_ = param.phase();
      if (layer_param_.blobs_size() > 0) {
        //按 layer_param_设置本身Blob对象个数,并依次将每个Blob对象尺寸调整为与layer_param_中的Blob尺寸一致
        blobs_.resize(layer_param_.blobs_size());
        for (int i = 0; i < layer_param_.blobs_size(); ++i) {
          blobs_[i].reset(new Blob<Dtype>());
          blobs_[i]->FromProto(layer_param_.blobs(i));
        }
      }
    }
    //析构函数
  virtual ~Layer() {}

  /**
   * @brief Implements common layer setup functionality.
   *
   * @param bottom the preshaped input blobs
   * @param top
   *     the allocated but unshaped output blobs, to be shaped by Reshape
   *
   * Checks that the number of bottom and top blobs is correct.
   * Calls LayerSetUp to do special layer setup for individual layer types,
   * followed by Reshape to set up sizes of top blobs and internal buffers.
   * Sets up the loss weight multiplier blobs for any non-zero loss weights.
   * This method may not be overridden.
   */
   
   //配置函数,实现常用层配置接口,不可被覆盖
  void SetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
    CheckBlobCounts(bottom, top);   //检查Blob
    LayerSetUp(bottom, top);        //  与层类型相关的配置过程
    Reshape(bottom, top);       //对Top Blob变形
    SetLossWeights(top);        //设置损失权值因子Blob
  }

  /**
   * @brief Does layer-specific setup: your layer should implement this function
   *        as well as Reshape.
   *
   * @param bottom
   *     the preshaped input blobs, whose data fields store the input data for
   *     this layer
   * @param top
   *     the allocated but unshaped output blobs
   *
   * This method should do one-time layer specific setup. This includes reading
   * and processing relevent parameters from the <code>layer_param_</code>.
   * Setting up the shapes of top blobs and internal buffers should be done in
   * <code>Reshape</code>, which will be called before the forward pass to
   * adjust the top blob sizes.
   */
   
   //层配置(虚)函数,做特定类型层相关的配置,由该类型层自己实现
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,const vector<Blob<Dtype>*>& top) {}
   
   //变形(纯虚)函数,修改Top Blob以及内部Blob缓冲区的形状
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) = 0;

 
   //前向传播函数,给定Bottom Blob,计算Top Blob和loss,返回值为当前层loss
   //该函数会调用相应设裕包装闲数,如Forward_cpu或Forward_gpu来实现真正的计算过程。如果该层有任意非零loss_weights参数,那么包装函数会计算并返回loss
   //派生类应该实现Forward_cpu和Forward_gpu (可选〉
  inline Dtype Forward(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  //反向传播函数,给定Top Blob误差梯度,汁算Bottom Blob误差梯度
  //参数说明:
  // top-Top Blob,其diff域包含来自上一层的误差梯度
  // propagate_down -- 多路幵关,与Bottom Blob矢量维度相问,每个值表示是否将误差梯度传递到对应的 Bottom Blob
  // bottom—Bottom Blob,其diff域需要由该函数计算得到
  // 该函数会调用相应设备包装函数,如Backward_cpu或Backward_gpu来实现真正的计算过程,由派生类负责实现
  inline void Backward(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down,
      const vector<Blob<Dtype>*>& bottom);

  //返回Layer内部可训练的权值、偏置项Blob向量
  vector<shared_ptr<Blob<Dtype> > >& blobs() {
    return blobs_;
  }

  //返回Layer初始化参数(由ProtoBuffer提供)
  const LayerParameter& layer_param() const { return layer_param_; }

  //将Layer初始化参数写入ProtoBuffer缓冲区
  virtual void ToProto(LayerParameter* param, bool write_diff = false);

  //返回与某个Top Blob相关的标量loss值
  inline Dtype loss(const int top_index) const {
    return (loss_.size() > top_index) ? loss_[top_index] : Dtype(0);
  }

  //设置与某个Top Blob相关的标量loss值
  inline void set_loss(const int top_index, const Dtype value) {
    if (loss_.size() <= top_index) {
      loss_.resize(top_index + 1, Dtype(0));
    }
    loss_[top_index] = value;
  }

  //返回层类型字符串,便于识別,由派生类负责实现
  virtual inline const char* type() const { return ""; }

 //返回该Layer需要的输入Blob数目.-1表示不关心。由派生类负责实现
  virtual inline int ExactNumBottomBlobs() const { return -1; }

  virtual inline int MinBottomBlobs() const { return -1; }
  
  virtual inline int MaxBottomBlobs() const { return -1; }
  //返回该Layer需要的输出Blob数目.-1表示不关心。由派生类负责实现
  virtual inline int ExactNumTopBlobs() const { return -1; }
 
  virtual inline int MinTopBlobs() const { return -1; }
  
  virtual inline int MaxTopBlobs() const { return -1; }
  
  //返回该Layer是否有相同的输入/输出Blob,由派生类负责实现
  virtual inline bool EqualNumBottomTopBlobs() const { return false; }

  //返回是否允许匿名Top Blob,即由该Layer自动创建。若为真,在Net::Init()函数中会创建足够多的匿名Top Blob来满足该 Layer ExactNumTopBlobs()、MinTopBlobs()需求
  virtual inline bool AutoTopBlobs() const { return false; }

  //返回某些Bottom Blob足否允许强制反向传播,如果AllowForceBackward(i) === false,将会忽略 force_backward 设定
  virtual inline bool AllowForceBackward(const int bottom_index) const {
    return true;
  }

  //指定该Layer是否计算相对权值或偏置项的梯度,具体相对谁由param_id指定
  inline bool param_propagate_down(const int param_id) {
    return (param_propagate_down_.size() > param_id) ?
        param_propagate_down_[param_id] : false;
  }
  
  //设置该Layer是否计算相对权值或偏置项的梯度,具体相对谁由param_id指定
  inline void set_param_propagate_down(const int param_id, const bool value) {
    if (param_propagate_down_.size() <= param_id) {
      param_propagate_down_.resize(param_id + 1, true);
    }
    param_propagate_down_[param_id] = value;
  }


 protected:
  /** The protobuf that stores the layer parameters */
  LayerParameter layer_param_;
  /** 当前所处阶段: TRAIN or TEST */
  Phase phase_;
  /** The vector that stores the learnable parameters as a set of blobs. */
  //Layer 内部权值或偏置项,以 Blob 方式组织
  vector<shared_ptr<Blob<Dtype> > > blobs_;
  /** Vector indicating whether to compute the diff of each param blob. */
  //标志位,是否计算对应参数的误差梯度
  vector<bool> param_propagate_down_;

  //标志位,在目标函数中,是否每个Top Blob都有非零权重
  vector<Dtype> loss_;

//下面4个函数,我们会在各个Layer派生类中经常看到

  /** @brief Using the CPU device, compute the layer output. */
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) = 0;
  /**
   * @brief Using the GPU device, compute the layer output.
   *        Fall back to Forward_cpu() if unavailable.
   */
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
    // LOG(WARNING) << "Using CPU code as backup.";
    return Forward_cpu(bottom, top);
  }

  /**
   * @brief Using the CPU device, compute the gradients for any parameters and
   *        for the bottom blobs if propagate_down is true.
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down,
      const vector<Blob<Dtype>*>& bottom) = 0;
  /**
   * @brief Using the GPU device, compute the gradients for any parameters and
   *        for the bottom blobs if propagate_down is true.
   *        Fall back to Backward_cpu() if unavailable.
   */
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down,
      const vector<Blob<Dtype>*>& bottom) {
    // LOG(WARNING) << "Using CPU code as backup.";
    Backward_cpu(top, propagate_down, bottom);
  }

  /**
   * Called by the parent Layer's SetUp to check that the number of bottom
   * and top Blobs provided as input match the expected numbers specified by
   * the {ExactNum,Min,Max}{Bottom,Top}Blobs() functions.
   */
   //校验输入/输出Blob数目是否满足Layer要求
  virtual void CheckBlobCounts(const vector<Blob<Dtype>*>& bottom,
                               const vector<Blob<Dtype>*>& top) {
    if (ExactNumBottomBlobs() >= 0) {
      CHECK_EQ(ExactNumBottomBlobs(), bottom.size())
          << type() << " Layer takes " << ExactNumBottomBlobs()
          << " bottom blob(s) as input.";
    }
    if (MinBottomBlobs() >= 0) {
      CHECK_LE(MinBottomBlobs(), bottom.size())
          << type() << " Layer takes at least " << MinBottomBlobs()
          << " bottom blob(s) as input.";
    }
    if (MaxBottomBlobs() >= 0) {
      CHECK_GE(MaxBottomBlobs(), bottom.size())
          << type() << " Layer takes at most " << MaxBottomBlobs()
          << " bottom blob(s) as input.";
    }
    if (ExactNumTopBlobs() >= 0) {
      CHECK_EQ(ExactNumTopBlobs(), top.size())
          << type() << " Layer produces " << ExactNumTopBlobs()
          << " top blob(s) as output.";
    }
    if (MinTopBlobs() >= 0) {
      CHECK_LE(MinTopBlobs(), top.size())
          << type() << " Layer produces at least " << MinTopBlobs()
          << " top blob(s) as output.";
    }
    if (MaxTopBlobs() >= 0) {
      CHECK_GE(MaxTopBlobs(), top.size())
          << type() << " Layer produces at most " << MaxTopBlobs()
          << " top blob(s) as output.";
    }
    if (EqualNumBottomTopBlobs()) {
      CHECK_EQ(bottom.size(), top.size())
          << type() << " Layer produces one top blob as output for each "
          << "bottom blob input.";
    }
  }

  /**
   * Called by SetUp to initialize the weights associated with any top blobs in
   * the loss function. Store non-zero loss weights in the diff blob.
   */
   //该函数在Layer的Setup函数中被调用,主要目的是初始化与Top Blob相关的loss权重,放到Top Blob的diff域,实际由Forward()计算loss函数
   //loss_weight == 0,表示当前层不参与loss函数汁算,大部分Layer属于这一类
   //loss_weight ==1,表示当前层参与loss函数汁算,损失层(LossLayer) 属于这一类
  inline void SetLossWeights(const vector<Blob<Dtype>*>& top) {
  //从ProtoBuffer对象中获得Layer参数,这里需要用loss_weight参数
    const int num_loss_weights = layer_param_.loss_weight_size();
    //如果 ProtoBuffer中存在至少一个loss_weight参数,loss_weight参数个数应当与Top Blob数目相同,或者不要loss_weight参数
    if (num_loss_weights) {
      CHECK_EQ(top.size(), num_loss_weights) << "loss_weight must be "
          "unspecified or specified once per top blob.";
    //遍历每个Top Blob
      for (int top_id = 0; top_id < top.size(); ++top_id) {
      // 从 ProtoBuffer 对象拿到 loss_weight 实际值(0 或者1)
        const Dtype loss_weight = layer_param_.loss_weight(top_id);
        //若为0,跳过
        if (loss_weight == Dtype(0)) { continue; }\
        //若不为0,则对网络进行相关设置
        this->set_loss(top_id, loss_weight);    //本地记录loss_weight值
        const int count = top[top_id]->count();
        Dtype* loss_multiplier = top[top_id]->mutable_cpu_diff();
        //将loss_weight值入 Top Blob 的diff域,传递到其他需耍使用的地一方,实现远程同步
        caffe_set(count, loss_weight, loss_multiplier);
      }
    }
  }

 private:
 //禁用拷贝构造函数和賦值运算函数 
  DISABLE_COPY_AND_ASSIGN(Layer);
};  // class Layer

// Forward and backward wrappers. You should implement the cpu and
// gpu specific implementations instead, and should not change these
// functions.
//使用时只需在派生类中改写 Forward_cpu、Forward_gpu、Backward_cpu、Backward_gpu
template <typename Dtype>
inline Dtype Layer<Dtype>::Forward(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  Dtype loss = 0;
  Reshape(bottom, top);
  switch (Caffe::mode()) {      //判断计算设备
  case Caffe::CPU:      //在CPU上执行Forward计算
    Forward_cpu(bottom, top);   //调用CPU版本的 Forward函数
    //还没完,要计算loss (如果有的话)
    for (int top_id = 0; top_id < top.size(); ++top_id) {
      if (!this->loss(top_id)) { continue; }
      const int count = top[top_id]->count();
      // 若为 LossLayer,则已经通过Forward函数计算出全局损失函数,放在Top Blob data域
      const Dtype* data = top[top_id]->cpu_data();
      // 若loss_weight不为0,则己经在SetLossWeights函数中将loss权重放在Top Blob diff域
      const Dtype* loss_weights = top[top_id]->cpu_diff();
      // 计算加权后的loss之和,得到标量loss值
      loss += caffe_cpu_dot(count, data, loss_weights);
    }
    break;
  case Caffe::GPU:
    Forward_gpu(bottom, top);
#ifndef CPU_ONLY
    for (int top_id = 0; top_id < top.size(); ++top_id) {
      if (!this->loss(top_id)) { continue; }
      const int count = top[top_id]->count();
      const Dtype* data = top[top_id]->gpu_data();
      const Dtype* loss_weights = top[top_id]->gpu_diff();
      Dtype blob_loss = 0;
      caffe_gpu_dot(count, data, loss_weights, &blob_loss);
      loss += blob_loss;
    }
#endif
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode.";
  }
  return loss;
}
//反向传播函数,直接调用对应设备函数
template <typename Dtype>
inline void Layer<Dtype>::Backward(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  switch (Caffe::mode()) {
  case Caffe::CPU:
    Backward_cpu(top, propagate_down, bottom);
    break;
  case Caffe::GPU:
    Backward_gpu(top, propagate_down, bottom);
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode.";
  }
}

//将层配置参数序列化为ProtoBuffer
template <typename Dtype>
void Layer<Dtype>::ToProto(LayerParameter* param, bool write_diff) {
  param->Clear();
  param->CopyFrom(layer_param_);
  param->clear_blobs();
  for (int i = 0; i < blobs_.size(); ++i) { //权值和偏置项也会保存
    blobs_[i]->ToProto(param->add_blobs(), write_diff);
  }
}

}  // namespace caffe

#endif  // CAFFE_LAYER_H_

Layer源文件位于src/caffe/layer.cpp中:

#include "caffe/layer.hpp"

namespace caffe {

INSTANTIATE_CLASS(Layer);

}  // namespace caffe

可见Layer大部分函数并没有实现,只有虚函数,真正的实现都在派生类中。具体代码可以进一步阅读 src/caffe/丨ayers/*.cpp

在使用 Layer 之前,需要先包含头文件#include <caffe/layer.hpp>,再通过using namespace caffe;使用命名空间caffe。如果代码中试图创建Layer对象,编译时会报错:

error: cannot declare variable 'a^ to be of abstract type 'caffe::Layer<float>

这是因为Layer类是一个虚基类,不能直接创建对象。关于虚基类,这里不再过多说明.