我们找到SoftmaxWithLossLayer.hpp
文件查看声明,如下:
//将实数预测向量通过Softmax计算获得每个类别的概率分布
//这个类比单独SoftmaxLayer + MultinomialLogisticLossLayer在梯度数值计算上更加稳定
//Test阶段,这个层可以直接用SoftmaxLayer代替
/**
*输入Blob 1为预测结果,形状为N x K x 1 x 1,K为总类别数目,N为批量数。取值范围为(-Inf, Inf),
*表示每个类别获得的分类score,值越大说明输入图像与该类别越接近
*输入Blob 2为真实标签,形状为N x 1 x 1 x 1
*输出Blob为计算得到的交叉熵分类损失E,形状为1 x 1 x 1 x 1
**/
template <typename Dtype>
class SoftmaxWithLossLayer : public LossLayer<Dtype> {
public:
/**
* @param param provides LossParameter loss_param, with options:
* - ignore_label (optional)
* Specify a label value that should be ignored when computing the loss.
* - normalize (optional, default true)
* If true, the loss is normalized by the number of (nonignored) labels
* present; otherwise the loss is simply summed over spatial locations.
*/
explicit SoftmaxWithLossLayer(const LayerParameter& param)
: LossLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline const char* type() const { return "SoftmaxWithLoss"; }
virtual inline int ExactNumTopBlobs() const { return -1; }
virtual inline int MinTopBlobs() const { return 1; }
virtual inline int MaxTopBlobs() const { return 2; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/**
* @brief Computes the softmax loss error gradient w.r.t. the predictions.
*
* Gradients cannot be computed with respect to the label inputs (bottom[1]),
* so this method ignores bottom[1] and requires !propagate_down[1], crashing
* if propagate_down[1] is set.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
* as @f$ \lambda @f$ is the coefficient of this layer's output
* @f$\ell_i@f$ in the overall Net loss
* @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
* @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
* (*Assuming that this top Blob is not used as a bottom (input) by any
* other layer of the Net.)
* @param propagate_down see Layer::Backward.
* propagate_down[1] must be false as we can't compute gradients with
* respect to the labels.
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ x @f$; Backward computes diff
* @f$ \frac{\partial E}{\partial x} @f$
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels -- ignored as we can't compute their error gradients
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
/// Read the normalization mode parameter and compute the normalizer based
/// on the blob size. If normalization_mode is VALID, the count of valid
/// outputs will be read from valid_count, unless it is -1 in which case
/// all outputs are assumed to be valid.
virtual Dtype get_normalizer(
LossParameter_NormalizationMode normalization_mode, int valid_count);
/// The internal SoftmaxLayer used to map predictions to a distribution.(内置一个SoftmaxLayer对象)
shared_ptr<Layer<Dtype> > softmax_layer_;
/// prob stores the output probability predictions from the SoftmaxLayer.
Blob<Dtype> prob_;
/// bottom vector holder used in call to the underlying SoftmaxLayer::Forward
vector<Blob<Dtype>*> softmax_bottom_vec_;
/// top vector holder used in call to the underlying SoftmaxLayer::Forward
vector<Blob<Dtype>*> softmax_top_vec_;
/// Whether to ignore instances with a certain label.
bool has_ignore_label_;
/// The label indicating that an instance should be ignored.
int ignore_label_;
/// How to normalize the output loss.
LossParameter_NormalizationMode normalization_;
int softmax_axis_, outer_num_, inner_num_;
};
之后我们来看实现的.cpp
文件:
第一个是SetUp函数.
```c++
template
void SoftmaxWithLossLayer
const vector
LossLayer
//创建时动态修改本层的LayerParameter参数,适应SoftmaxLayer
LayerParameter softmax_param(this->layer_param_);
softmax_param.set_type("Softmax");
softmax_layer_ = LayerRegistry
softmax_bottom_vec_.clear();
softmax_bottom_vec_.push_back(bottom[0]);
softmax_top_vec_.clear();
softmax_top_vec_.push_back(&prob_);
softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);
has_ignore_label_ =
this->layer_param_.loss_param().has_ignore_label();
if (has_ignore_label_) {
ignore_label_ = this->layer_param_.loss_param().ignore_label();
}
if (!this->layer_param_.loss_param().has_normalization() &&
this->layer_param_.loss_param().has_normalize()) {
normalization_ = this->layer_param_.loss_param().normalize() ?
LossParameter_NormalizationMode_VALID :
LossParameter_NormalizationMode_BATCH_SIZE;
} else {
normalization_ = this->layer_param_.loss_param().normalization();
}
}
可见,在SetUp阶段,创建了内部SoftmaxLayer对象并配置了其输入/输出Blob,然后调用该对象的SetUp函数。
下面看看`SoftmaxWithLossLayer`的前向传播函数:
```c++
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Forward_cpu(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
// The forward pass computes the softmax prob values.(内部SoftmaxLayer的前向传播计算)
softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
//获得概率密度
const Dtype* prob_data = prob_.cpu_data();
//获得标签值
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
int count = 0;
Dtype loss = 0;
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; j++) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
continue;
}
DCHECK_GE(label_value, 0);
DCHECK_LT(label_value, prob_.shape(softmax_axis_));
//计算损失函数-log(prob[label])
loss -= log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
Dtype(FLT_MIN)));
++count;
}
}
//设置输出Blob值
top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count);
if (top.size() == 2) {
top[1]->ShareData(prob_);
}
}
可见通过内部SoftmaxLayer
对象非常简洁。我们再看一下 Backward计算:
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[1]) {
//label输入Blob不做反向传播
LOG(FATAL) << this->type()
<< " Layer cannot backpropagate to label inputs.";
}
if (propagate_down[0]) {
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
const Dtype* prob_data = prob_.cpu_data();
//将概率密度拷贝输入Blob的diff域
caffe_copy(prob_.count(), prob_data, bottom_diff);
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
int count = 0;
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; ++j) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] = 0;
}
} else {
//在输入Blob的diff域,计算当前槪率密度与理想概率密度(label 对应类别概率为1,其他类别 概肀为0)之差,实现误差反向传播
bottom_diff[i * dim + label_value * inner_num_ + j] -= 1;
++count;
}
}
}
// Scale gradient(适当的缩放)
Dtype loss_weight = top[0]->cpu_diff()[0] /
get_normalizer(normalization_, count);
caffe_scal(prob_.count(), loss_weight, bottom_diff);
}
}
通过对Caffe损失层的研究,我们了解到,前向传播阶段数据逐层传播,到损失层计算预测概率密度和损失函数;而反向传播阶段则从损失层开始,由预测概率密度与理想概率密度(这就是有监督学习的佐证)差值得到误差(diff),然后将由下一节内容逐层反向传播。我们已经知道一个Blob是由data和diff两部分构成的,如果说数据读取层是data之源,那么损失层就是diff之源。
反向传播的实现
Caffe Net数据结构中的'Backward函数具体的声明和实现文件为net.hpp
和net.cpp
:
//从第start层反向传播到达第end层
template <typename Dtype>
void Net<Dtype>::BackwardFromTo(int start, int end) {
CHECK_GE(end, 0);
CHECK_LT(start, layers_.size());
for (int i = start; i >= end; --i) {
for (int c = 0; c < before_backward_.size(); ++c) {
before_backward_[c]->run(i);
}
if (layer_need_backward_[i]) {
//遍历每个居,调用相应的Backward函数
layers_[i]->Backward(
top_vecs_[i], bottom_need_backward_[i], bottom_vecs_[i]);
if (debug_info_) { BackwardDebugInfo(i); }
}
for (int c = 0; c < after_backward_.size(); ++c) {
after_backward_[c]->run(i);
}
}
}
//从第start层幵始到第一层的反向传播过程
template <typename Dtype>
void Net<Dtype>::BackwardFrom(int start) {
BackwardFromTo(start, 0);
}
//从最后一层开始到第end层的反向传播过程
template <typename Dtype>
void Net<Dtype>::BackwardTo(int end) {
BackwardFromTo(layers_.size() - 1, end);
}
//整个网络的反向传播过程
template <typename Dtype>
void Net<Dtype>::Backward() {
BackwardFromTo(layers_.size() - 1, 0);
if (debug_info_) {
//如果打幵了调试信息开关(在prototxt中设定),则计算所有权值的data/diff的L1、L2范数,监控其变化情况,避免发散
Dtype asum_data = 0, asum_diff = 0, sumsq_data = 0, sumsq_diff = 0;
for (int i = 0; i < learnable_params_.size(); ++i) {
asum_data += learnable_params_[i]->asum_data();
asum_diff += learnable_params_[i]->asum_diff();
sumsq_data += learnable_params_[i]->sumsq_data();
sumsq_diff += learnable_params_[i]->sumsq_diff();
}
const Dtype l2norm_data = std::sqrt(sumsq_data);
const Dtype l2norm_diff = std::sqrt(sumsq_diff);
LOG(ERROR) << " [Backward] All net params (data, diff): "
<< "L1 norm = (" << asum_data << ", " << asum_diff << "); "
<< "L2 norm = (" << l2norm_data << ", " << l2norm_diff << ")";
}
}
//更新权值函数,在反向传播结束后调用
template <typename Dtype>
void Net<Dtype>::Update() {
for (int i = 0; i < learnable_params_.size(); ++i) {
//调用内部Blob的Update()函数,具体计算为data = data - diff
learnable_params_[i]->Update();
}
}
//权值diff清零
template <typename Dtype>
void Net<Dtype>::ClearParamDiffs() {
for (int i = 0; i < learnable_params_.size(); ++i) {
Blob<Dtype>* blob = learnable_params_[i];
switch (Caffe::mode()) {
case Caffe::CPU:
caffe_set(blob->count(), static_cast<Dtype>(0),
blob->mutable_cpu_diff());
break;
case Caffe::GPU:
#ifndef CPU_ONLY
caffe_gpu_set(blob->count(), static_cast<Dtype>(0),
blob->mutable_gpu_diff());
#else
NO_GPU;
#endif
break;
}
}
}
到此,caffe基本的backward反向传播过程就清楚了,这样对于设计更复杂的有监督学习算法具有指导意义。